Poisson manifolds, Lie algebroids, modular classes: a survey
نویسنده
چکیده
After a brief summary of the main properties of Poisson manifolds and Lie algebroids in general, we survey recent work on the modular classes of Poisson and twisted Poisson manifolds, of Lie algebroids with a Poisson or twisted Poisson structure, and of Poisson–Nijenhuis manifolds. A review of the spinor approach to the modular class concludes the paper.
منابع مشابه
On the Integration of Poisson Manifolds, Lie Algebroids, and Coisotropic Submanifolds
In recent years, methods for the integration of Poisson manifolds and of Lie algebroids have been proposed, the latter being usually presented as a generalization of the former. In this Letter it is shown that the latter method is actually related to (and may be derived from) a particular case of the former if one regards dual of Lie algebroids as special Poisson manifolds. The core of the proo...
متن کاملStability of higher order singular points of Poisson manifolds and Lie algebroids
We study the stability of singular points for smooth Poisson structures as well as general Lie algebroids. We give sufficient conditions for stability lying on the first (not necessarily linear) approximation of the given Poisson structure or Lie algebroid at a singular point. The main tools used here are the classical Lichnerowicz-Poisson cohomology and the deformation cohomology for Lie algeb...
متن کامل0 Connections up to homotopy and characteristic classes ∗
The aim of this note is to clarify the relevance of “connections up to homotopy” [4, 5] to the theory of characteristic classes, and to present an application to the characteristic classes of Lie algebroids [3, 5, 7] (and of Poisson manifolds in particular [8, 13]). We have already remarked [4] that such connections up to homotopy can be used to compute the classical Chern characters. Here we p...
متن کاملPoisson Structures on Lie Algebroids
In this paper the properties of Lie algebroids with Poisson structures are investigated. We generalize some results of Fernandes [1] regarding linear contravariant connections on Poisson manifolds at the level of Lie algebroids. In the last part, the notions of complete and horizontal lifts on the prolongation of Lie algebroid are studied and their compatibility conditions are pointed out.
متن کاملA note on Poisson-Lie algebroids (I)
In this paper we generalize the linear contravariant connection on Poisson manifolds to Lie algebroids and study its tensors of torsion and curvature. A Poisson connection which depends only on the Poisson bivector and structural functions of the Lie algebroid is given. The notions of complete and horizontal lifts are introduced and their compatibility conditions are pointed out. M.S.C. 2000: 5...
متن کامل